Nilai lim_(x→3)⁡ ((x+6) tan⁡(2x-6))/((x^2-x-6))=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 3} \ \frac{(x+6) \tan(2x-6)}{(x^2-x-6)} = \cdots \)

  1. \( -\frac{18}{5} \)
  2. \( -\frac{9}{5} \)
  3. \( \frac{9}{5} \)
  4. \( \frac{18}{5} \)
  5. \( \frac{27}{5} \)

(UM UGM 2016)

Pembahasan:

\begin{aligned} \lim_{x \to 3} \ \frac{(x+6) \tan(2x-6)}{(x^2-x-6)} &= \lim_{x \to 3} \ \frac{(x+6) \tan 2(x-3)}{(x+2)(x-3)} \\[8pt] &= \lim_{x \to 3} \ \frac{(x+6)}{(x+2)} \cdot \lim_{x \to 3} \ \frac{\tan 2(x-3)}{(x-3)} \\[8pt] &= \frac{(3+6)}{(3+2)} \cdot 2 = \frac{9}{5} \cdot 2 = \frac{18}{5} \end{aligned}

Jawaban D.